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Abstract

Human physiological signals collected through wearable devices enable a range of applica-

tions, including biometric authentication. Prior studies have demonstrated the potential of
using physielogical signals to uniquely identify individuals, bul their validity in real-world
scenarios remains limited. Most existing work relies on controlled experimental settings,
small datasets, short-term evaluations, and the absence of unseen-user testing—factors
that tend to produce overly optimistic performance estimates, Although recent research
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1. Introduction

Personal devices—such as smartphones, smarltwatches, wearables, or smart
rings—have become invaluable tools for collecting physiological data [1], including heart
rate [2] and blpod pressure [3.4] among others. These devices not only enhance health
monitoring but also open new possibilities for authentication systems. Traditional methods,
such as passwords and PINs, rely on knowledge-based credentials ("what you know"),
making them vulnerable to issues like phishing and theft In contrast, biometrics—the

research field that studies how individuals can be uniquely recognized from their physical,
5 inherently possessed by individu-

als {"what you are”). Biomelrics operates on the foundational assumption that unique

chemical, or behavioral attributes |5}—rely on trai

patterns or characteristics can reliably distinguish one individual from another. These

traits encompass facial features [6], fingerprints [7], and anatomical structures |

.9, as well




Guidelines

O 1. Reproducibility and
| \ transparency

1.1 Open-source dataset
1.2 Open-source code

1.3 Detailed documentation

2. Data quality “ 3. Evaluation setup

2.1 Real-world data 3.1 Temporal split
2.2 Longitudinal data 3.2 Testing with unseen users
2.3 Demographic diversity 3.3 Balanced evaluation

2.4 Health condition diversity

2.5 Number of users
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Ensure reproducibility (code and data availability) \

Issue

Related work: 13

with publicly available code: 1

with publicly available data: 7

Solution

= Release code and datasets to
support reproducibility

= Offer controlled data access
(through data sharing
agreements) when ethical
constraints apply
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Ensure reproducibility (documentation)

Issue Solution

= “Random Forest was used” = Always report library and
* No parameters or version specified version used
RandomForestClassifier

class sklearn.ensemble.RandomForestClassifier{n_estimators=109, *,
criterion="'gini', max_depth=None, min_samples_split=2, min_samples_leaf=1,
min_weight_fraction_leaf=0.8, max_features='sqrt', max_leaf_nodes=None,
min_impurity_decrease =0.0, bootstrap=True, oob_score=False, n_jobs=None,
random_state=None, verbose=0, warm_start=False, class_weight=None,

ccp_alpha=0.0, max_samples=None, monotonic_cst=None) [source]

Parameters:
n_estimators : int, default=100

The number of trees in the forest.

@ Changed in version 0.22: The default value of n_estimators changed from 10 to 100
in 0.22.

= “subtracting the moving average” | ® Report all the necessary
» window size not specified information
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Guidelines

O 1. Reproducibility and
| \ transparency

2. Data quality “ 3. Evaluation setup

1.1 Open-source dataset 2.1 Real-world data 3.1 Temporal split
1.2 Open-source code 2.2 Longitudinal data 3.2 Testing with unseen users
1.3 Detailed documentation 2.3 Demographic diversity 3.3 Balanced evaluation

2.4 Health condition diversity

2.5 Number of users
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Ensure data quality (laboratory vs real-world scenario)

Issue Solution

= Most of the solutions in literature = Test solutions in real-world
are tested in laboratory settings
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Laboratory vs real-world scenario — What we found

Biometric recognition

I Real-world
[ Laboratory

MCC
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Ensure data quality (diversity in the dataset)

Issue

User 1 (Male, 26)

VAN

[56, 120]
User 2 (Male, 24)

W-}

[62, 118]
User 3 (Male 28)

W

(64, 117]

User 4 (Female, 56)

4

[70, 130]

Irregular
heartbeat

Regular
heartbeat

Regular
heartbeat

Solution

=" Demographic (e.g., age,
gender) diversity

= Health-condition (e.g., chronic
conditions) diversity
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Guidelines

O 1. Reproducibility and
| \ transparency

1.1 Open-source dataset
1.2 Open-source code

1.3 Detailed documentation

2. Data quality

2.1 Real-world data

2.2 Longitudinal data

2.3 Demographic diversity
2.4 Health condition diversity

2.5 Number of users

“ 3. Evaluation setup

3.1 Temporal split
3.2 Testing with unseen users

3.3 Balanced evaluation
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Ensure robust evaluation setup (training/test split)

Issue Solution

0 100 200 300 400  S00 600 700 8OO 0 100 200 300 400 500
—— Training = Test = Training = Test

700 800
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Training/test split — What we found

Biometric recognition

1.0

0.8

0.6

MCC

0.4

0.2

0.0

B Temporal split
= No temporal split
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Towards Robust and Reproducible Evaluation

O 1. Reproducibility and
N\ transparency

g 2. Data quality @ 3. Evaluation setup

] ¥ O
Sl 1.1 Open-source dataset 2.1 Real-world data 3.1 Temporal split
- i3
O g 1.2 Open-source code 2.2 Longitudinal data 3.2 Testing with unseen users
Paper 1.3 Detailed documentation 2.3 Demographic diversity 3.3 Balanced evaluation Code repo

2.4 Health condition diversity

2.5 Number of users
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